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1 Abstract

Tile work reported deals with tile problem of operating a robot manipulator under a rate control

mode while the end effector is not in contact with the external environment, and then switching

to a force control mode when contact is made. The paper details how the modal changeover may

be accomplished in a manner transparent to the operator, and will allow operator applied forces

to be reflected at the robot end effector. A one degree of freedom demonstration system is used

to illustrate the concept, which is then applied to a PUMA manipulator. Sample code for the

implementation of the control is provided, experimental results show that the optimum setting for

tile gain is a function of the compliance of the end effector, and the compliance of tile external

constraint.

2 Introduction

Many conventional robot manipulators operate either in rate, or in positional control modes. That

is to say that a command issued by the operator causes the end effector of the manipulator to move

with a particular velocity in a certain direction, or to move in a specified direction a given distance.

Intuitively, this is the most useful form of motion required of a manipulator, since it can be used

to accomplish a wide variety of tasks involving the positioning of objects for assembly tasks, or the

performance of speed related tasks such as welding, or grinding.
Another class of motions for which manipulators may be used may be classified as force control

problems. In these cases, it is required to develop forces and perhaps moments between the manip-

ulator and an external environment, in order to perform the required task. Examples of application

of force control would include removing a module from a satellite in the cargo bay, or assembling

components of the space station structure. Clearly, more than simple motion of the end effector

is required, and some knowledge, and subsequent control of the interactive forces and moments

developed between the manipulator and the environment in which it works, has to be established.
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3 Background

Force control of robotic manipulators is an established subject with an extensive literature [1], [2],

[3], [4], [5], [6]. Much of the existing work is focussed on how to transform force and moment

requirements expressed in the worhl or task frame, to torques exerted by the individual joints of

tile manipulator. An example of this might be where a manipulator is attempting to insert a screw.

The problem to solve is: what robot joint torques provide a torque about the screw axis, and a

downward force on the screwdriver to accomplish insertion. This problem, and many like it, are

solved by using ttie manipulator Jacobian to relate forces and moments expressed in terms of joint

and world coordinate frames. Since the Jacobian relates differential displacements in these two

frames, we may write

5x=JSq (1)

where the differential displacement in the world frame is _x, while the differential displacement in

the tool frame is 5% Tile principle of virtual work may be used to derive

r -- jTF (2)

where r is the vector of joint torques and F is tile vector of forces and moments expressed with

respect to the world frame. Although most manipulators implement equation 1 to relate world and

joint motions, few if any implement equation 2, enabling engineers to control world space forces by

controlling individual joint torques. Even if this were available, the task of accurately controlling

joint torques , is very difficult.

In the majority of tasks in which we are interested, man in the loop, rather than computer

control, is the normal mode of operation. In such operations, the forces needed to accomplish a

particular task are not specified analytically, rather, they are generated by ttle operator in a natural

manner. Inserting a screw is a good example of this. All that is required is to feed back to the

operator a measure of tile forces generated by the manipulator as it performs the task, enabling

a reduction or increase in force as appropriate. This scenario is usually described as bi-lateral

teleoperation.

In the work described here, we use a simple adaptation of conventional position and speed

controlled manipulation tasks to achieve force control in a natural and operator transparent manner.

In addition, the system is not strictly bi-lateral in nature, although the operator does experience

the forces being applied to the remote manipulator. The overall system provides a simple means

to implement force control strategies on existing manipulation systems in order to accomplish

assembly-type tasks.

4 Single Degree of Freedom Force Control System

The system is meant to simulate a one degree of freedom actuation system operating in rate and

force mode, i.e. on a commanded signal, the output of the system achieves a velocity proportional

to the input. The system schematic is shown in figure 1.

t usually by controlling motor current
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A simple center-off toggle switch represents the rate input signal, and may be either zero,

positive or negative. The switch output drives an electro-hydraulic servo valve which is connected

to a hydraulic cylinder. Using this arrangement, the piston rod may be driven in either direction

at a constant speed, or held stationary when the switch is in the center position. Tile end-effector

attached to the cylinder rod now has to interact with an external, compliant constraint, and has to

exert operator applied forces to it.
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Figure 1: Force Override Control System

A strain gauge is attached to the extended handle of the toggle switch, and another strain gauge

fixed to tile stiff, but compliant part of the end effector, as shown in figure 2.
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Figure 2: Strain Gauge Placement on Joystick and End Effector

The strain gauge on the end effector now acts as a mechanism to prevent large forces being
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applied to the spring loaded plate, representing the external environment, by feeding back its signal

to a summing junction following the toggle switch. By moving the toggle switch off the center

position, the ram will advance at a constant speed until contact with the plate occurs. Further

motion of the ram increases the feedback signal, reducing the ram speed until equilibrium is achieved

with the ram stationary, and a finite deflection of the plate. This deflection may be adjusted by

the feedback strain gauge amplifier gain,

At this point, the operator may press forward on the toggle switch handle, generating a signal

from the strain gauge attached to it. This signal is added to tile forward path signal causing further

advancement of the ram. Pulling back o,1 the lever will reduce the contact force. Returning the

toggle switch to the off position will cause the ram to retract until the end effector is just touching

the plate, theoretically with no interactive force between them.

In this manner, the forces applied by tile operator to the control handle are reflected to the

end effector. Although no force signal is fed back to tile operator, because he/she is applying tile

demanded force to a compliant member, some knowledge of the magnitude of the applied force is

sensed. The ratio of demanded and actually exerted forces may be scaled up or down using the

forward path gain.

If the dynamics of the servo valve are considered to be faster than the rest of the system, the

block diagram of the force override rate control system appears as shown in figure 3.

Figure 3: System Block Diagram

In the figure, we define: Kg= strain gauge amplifier gain, Ko= servo valve constant, Ks= actuator

gain, Ks= end effector stiffness, and K,= constraint stiffness. Since the open loop transfer function

may be written as

K'K°KgA (3)

where

Kb

A = 1 /Q + K, (4)
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and is clearly a positive constant, it appears that the system is first order. The step response may be

expected to be exponential, with a time constant selectable by the forward path gain. Experimental

results, though not presented here, confirmed the result.

4.1 Robot Manipulator Based System- One Degree of Freedom

In this phase of the work, the preceeding concept was applied to an industrial manipulator, a

PUMA 560, in order to determine the flmctional requirements of a commercial controller which

could accommodate the force control system. Figure 4 shows a schematic of the system, and

indicates how the toggle switch controller and end effector from the electro-hydraulic test facility

were simple changed to the robot facility.
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Figure 4: Force Override Using Manipulator

The force error is determined by analog equipment, so the problem is to firstly communicate tile

magnitude of this error to the PUMA controller, and then to drive the manipulator in an appropriate

manner in response to the error. The first problem was solved by simple A-D conversion, at about

200 IIz, and connecting tile resultant eight bit number to the PUMA controller parallel port.

Moving the manipulator in response to the resultant force error is somewhat machine specific, but

results for the PUMA are presented in detail since most manipulators offer a similar programming

environment, and so the algorithms should be easily transportable to other platforms. The resultant

code is as follows, written in tile VAL II language.

20 prompt''Calibrate (1) or run (2)";c

if c=2 goto 10

rate=25

signal 1,2,3,4,-5,-6,-7,-8

cv=bits(lO01,8)

type''Calibrated value='';cv

goto 20

623



10 x=bits(lO01,8)

z=(cv-x)/rate

if(abs(z))<2 tote

type x,z

departs z

goto I0

10

Tile first half of tile program, between lines 20 and 10, reads the A-D converter to obtain a current

value. This allows for drift in tile analog part of the system. At line 10, tile A-D converter is read

into x, and a target displacement z calculated. This value actually corresponds to a speed, since

the program executes the loop recursively, hence the motion of the tool is observed as a constant

speed. Tile actual speed ,nay be varied to a convenient value by the experimentally determined

variable rate. The motion command departs z causes the end effector to move in a straight line

z centimeters in tile direction of tile positive z axis. Because the loop is executed about every 50

msecs, new force errors from tile A-D converter are read in each time. In addition, a dead space of

2 reduces spurious motion of tim end effector due to noise and vibration causing the A-D convertor

output to vary in a random manner. This program exhibits both rate control of the PUMA, and

force control when driven by the joystick.

The selection of the variable rate will affect the operation of the system. If the manipulator is

in contact with a very stiff spring, and tire force error commands the tool to advance, say 10 ram,

large forces will be developed before the control loop next examines the force error, and retracts the

tool. The effect of changing rate is the same as changing the forward path gain in an inverse sense,

i.e. increasing rate decreases the forward path gain. In this experiment, and the one described

next, the forward path gain has to be determined by considering the external stiffness with which

the manipulator interacts, so as to prevent the development of large forces.

4.2 Robot Manipulator Based System- Multi-Degrees of Freedom

To implement this phase of the work, it was decided to try to make the end effector of the PUMA

apply three dimensional forces exerted by the operator on a compliant joystick. Figure 5 shows the

design of both the joystick and end effector attached to the PUMA.

In this design the forces applied in the x, y and z directions of the joystick frame are decoupled

by means of the placement of strain ganges. Gauges are placed in identical locations on the end

effector. In designing these units, the stiffness in each of the three directions was made the same.

Commercial force/torque sensor units could be used instead.

Force errors in each of the three directions were generated in analog mode with the use of three

differencing junctions. These force errors were then fed to a multi-input A-D converter which the

PUMA could address. The software for acquiring the analog signals and moving the PUMA in

response to them is very similar to that written for the one degree of freedom discussed earlier.

Test were performed on the system by observing tire step response of the force applied by the

robot tool to a demanded force applied at the joystick. The applied force was generated by applying

a static load in the required direction on the joystick. Force outputs in the x, y and z directions at

the tool were recorded, for various settings of the serve-system forward path gain ft. Experimental
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Figure 5: Force Sensing Joystick and End Effector

data, for increasing fl, are shown in figures 6, and 7. In these tests, the tool interacted with tile

same spring loaded plate constraint described earlier.

5 Discussion of Results and Conclusions

Although developed in a heuristic manner, the concept of a force control system overriding a rate

control system appears to perform as expected. Operator applied forces and moments may be

reflected at the end effector, with tile operator experiencing some measure of the forces being applied.

In the purely analog implementation using a one degree of freedom electrohydraulic actuator, the

response time may be freely adjusted by means of tlle forward path control system gain.

In applications in which sampling of the force, or force error is used to drive the actuator,

tile response is a function of the forward path gain, the compliance of the end effector and the

compliance of the constraint against which the end effector reacts. The external stiffness has to

be known before the limiting gain, consistent with stability, may be determined. Examples of such

unstable response corresponding to increased gain may be seen in figures 6 and 7.

Since prior knowledge of the environmental compliance is needed to set the system gain to

obtain acceptable response, a system with fixed gains cannot provide optimum response for all

tasks it has to perform. If tile external stiffness is unknown, the manipulator needs to carefully

probe the environment in order to determine the nature of the constraint it is dealing with. Once

this has been determined, the system gains may be adaptively set to deal with the task. It will be

expected that different responses will be obtained from objects constrained by springs (of varying

stiffnesses), and objects subject to purely inertial forces, such as a freely floating satellite. Current

work is being directed to this area.

The implementation of the force override system has been implemented on a particular robotic

platform, but the concept is general enough to be transferred to most manipulation systems. One

advantage of the system is its ability to be overlaid onto an existing manipulator and controller
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Figure 6: Step Response in x Direction for/3 = 0.5

combination.
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NASA Shuttle Logistics Depot Support to

Space Station Logistics

Richard J. McMillan
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Over the past 25 years, Space Logistics has undergone a great evolution in thought and practice. We

have progressed from a "Fire and Forget" posture to providing complete integrated logistics support

for a reusable spacecraft with a multimission role. This shift in the framework of Logistics has influ-

enced the various design communities in their endeavor to support the changing requirements for
the types of hardware necessary to meet the space flight mission challenges.

We are about to embark on the next evolutionary step from the reusable spacecraft to a permanent

on-orbit facility. This facility will have the capability of supporting human life over a 30-year period.
Many new challenges to our Logistics systems must be met with the same emphasis on innovation as

has led us in the past. We must be careful to take full advantage of the lessons learned on the Shuttle

Program, as well as to develop new approaches and techniques to solve the many challenges that
confront us with the Space Station Program.
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